A Method for Computing Symmetric and Related Polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newton’s Method for Symmetric Quartic Polynomials

We investigate the parameter plane of the Newton’s method applied to the family of quartic polynomials pa,b(z) = z 4 +az + bz +az+ 1, where a and b are real parameters. We divide the parameter plane (a, b) ∈ R into twelve open and connected regions where p, p′ and p′′ have simple roots. In each of these regions we focus on the study of the Newton’s operator acting on the Riemann sphere.

متن کامل

Bernstein's polynomials for convex functions and related results

In this paper we establish several polynomials similar to Bernstein's polynomials and several refinements of  Hermite-Hadamard inequality for convex functions.

متن کامل

Computing Elementary Symmetric Polynomials with a Sublinear Number of Multiplications

Elementary symmetric polynomials S n are used as a benchmark for the boundeddepth arithmetic circuit model of computation. In this work we prove that S n modulo composite numbersm = p1p2 can be computed with much fewer multiplications than over any field, if the coefficients of monomials xi1xi2 · · ·xik are allowed to be 1 either mod p1 or mod p2 but not necessarily both. More exactly, we prove...

متن کامل

Computing Elementary Symmetric Polynomials with a Subpolynomial Number of Multiplications

Elementary symmetric polynomials S k n are used as a benchmark for the bounded-depth arithmetic circuit model of computation. In this work we prove that S k n modulo composite numbers m = p 1 p 2 can be computed with much fewer multiplications than over any eld, if the coeecients of monomials x i1 x i2 x ik are allowed to be 1 either mod p 1 or mod p 2 but not necessarily both. More exactly, we...

متن کامل

A numerical method for computing signature symmetric balanced realizations

A new numerical scheme for computing balancing coordinate transformations for signature symmetric realizations in linear systems theory is presented. The method is closely related to the Jacobi method for diagonalizing symmetric matrices. Here the minimization of the sum of traces of the Gramians by orthogonal and hyperbolic Jacobi-type rotations is considered. The algorithm is shown to be glob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2000

ISSN: 0021-8693

DOI: 10.1006/jabr.2000.8538